Best -
Available
Copy

AD-A283 392
L L

Network Interface Specification
for the T1 Microprocessor

1

DTIC

L _F_ |

for public release and sale; ita

This document has been npp:ovod
distribution is unlimited,

ELECTE
AUG 1 51994 Timothy J. Callahan

timothyc@CS.Berkeley. EDU

\55@/94252
T T

Report No. UCB//CSD-94-823
May 1994

Computer Science Division (EECS)
University of California
Berkeley, California 94720

94 8 12 115

"”“M:‘ """WT} “

<ty

t
i
I
i
i
¢

Network Interface Specification
for the T1 Microprocessor *!

Timothy J. Callahan n
timothycQ@CS . Berkeley. EDU
May 1994 poo T T
1l .
Abstract bevre i

The overall performance of a multicomputer depends heavily on the interface be-
tween the software and the communication hardware. As pointed out in von Eicken’s
thesis, this communication architecture should be versatile in that it be able
to a variety of different communication models, including shared mem-

, and send&receive; it should support an efficient implementation of
each model; a.nd it should be incremental in that it shouldn’t interfere with the
computation performance of the processor.

Active Messages communication architectures have been uhovm to satisfy these
criteria. Software implementations of Active Measages have reduced communication
overhead by over an order of magnitude to near the minimum possible given existing
hardware. This project takes the next step and defines a hardware implementation
of an Active Message communication architecture, resulting in another order of
magnitude reduction in communication overhead.

The Active Message communication architecture defined in this report is an
extension to the MIPS-II instruction set architecture. The resulting architecture
features data transfer directly to/from processor registers, hardware dispatch directly
to Active Message handlers (along with limited context preservation), automatic
atomicity of handlers, cheap synchronisation operations, and hardware support for
multicast.

*This report was submitted in partial satisfaction of the requirements for the anthor’s M.S. degree.

!This research is supported in part by a National Science Foundation Graduate Fellowship, Grast
URI-N00014-92-1-1672 from the Office of Naval Research, and National Science Foundation Infrastruc-
tare Graat number QDA-8722188 Additional support comes from the International Computer Science
Institjte. . .

e

Contents
1 Introduction

2 Active Messages
21 TheMainIdeacottetietesccnnnosannsns
2.2 Support of Communication Models
22.1 Shared Memoryand Split-C
222 Message-Driven Models
223 Concusion00t ittt ettt
23 FourKeyIssuesttt ennenennnna.

3 Implementation Choices
3 Overviewttt e et e e e e e
3.2 Conmtextttt ittt ettt
33 DataTransfer« ottt vttt e e e
34 Synchromizationttt ittt t et
35 Send Failure. v .ttt ittt et et e
3.6 Network Virtualizationttt it vteenonn
37 Protection it et et e e e et e e
38 Eventsve. Exceptions 000t
39 Extensions.0ttt
310 Conclusion v it i it ittt e e e e e e e

4 Previous Research
5 Concurrent Work

6 Conclusion
6.1 Acknowledgements i

Bibliography

Appendix A: Network Interface Specification

25

26

26
27

27

TN T

1 Introduction

Continuing improvements in VLSI technology, apparent in the outstanding perfor-
mance/price ratios for microprocessors, have spurred the development of massively par-
allel processors, which are constructed by taking dozens to thousands of microprocessors
and connecting them with an interprocessor communication network. While the network
represents additional complexity and cost, solutions have been engineered that result in
high-performance machines that for many applications provide performance/price ratios
superior to those of traditional supercomputers.

The easiest way to build a massively parallel system is to physically distribute the mem-
ory among the processors. Essentially the nodes are similar to a modern workstations,
with a dedicated, high-bandwidth, low-latency network connecting them. Such dis-
tributed memory systems grow to large size more gracefully than systems where all the
memory is located in one central location.

The software running on each node must have some way of accessing the communication
network. This interface, as seen by the compiler or assembly language programmer, is
called the communication architecture! (see Figure 1). The functions defined by the
communication architecture are implemented by some combination of hardware, kernel
code, run-time systems, and library routines.

.

The communication architecture is distinguished from the communication micro-
architecture, which is composed of the implementation-specific details of the data transfer
functional units, interconnect structure, and network operation.

Application Layer
Communication Model
Communication Architecture
 Communication Micro-architecture
Communication Hardware

Figure 1: Communication Layers

The functionality provided by the communication architecture is typically used by a
parallel language (or extensions to a sequential language) to provide a communication
model to the application programmer. An example of a communication model is shared
memory, in which the application programmer sees a global address space. In this model
communication is performed by one processor writing to a memory location and another
processor reading from that location.

1The definition of this term, as well as most of the ideas contained in this section, are taken from
Thorsten von Eicken's Ph.D. thesis, [vE93].

Traditional communication architectures have often been overambitious and have tried
to do too much; they try to provide functionality that belongs more appropriately in the
communication model layer. By fixing a specific model in the communication architec-
ture, a semantic clash is risked. A semantic clash occurs when an interface provides a
certain high-level function, but the client needs slightly different functionality and there-
fore cannot use the provided function. If the interface succeeds in providing truly general
high-level functions, usually there is a performance penalty for clients that don’t need
all the functionality. '

For example, consider 2 communication architecture that provides only a shared-memory
abstraction to higher levels, but is built on top of a packet-based interconnection network.
The [KJA+93] study found that many applications require communication operations
that are less efficiently implemented with shared-memory than with message-passing. For
these operations, the shared-memory layer is a hindrance; the messaging efficiency of the
underlying hardware has been hidden. A semantic clash has occurred: the abstraction
provided does not match exactly what the application needs, and moreover prevents the
efficient construction of the abstraction the application does need.

Another example is the general send&receive mechanism, which typically requires the
use of buffers in the kernel address space. The kernel buffers are required because a send
may be performed before the user on the receiving node has allocated its own buffer
for the data. However, applications that have pre-allocated the buffers still pay the
cost of copying data between buffers in kernel and user space. Here again, the general
mechanism gets in the way of efficient use of the resources.

These examples give insight into which design criteria should be used for judging commu-
nication architectures. A well-designed communication architecture should be versatile
enough so that it can support many different communication models; it should be ef-
ficient in that the operations of each communication model should map efficiently to
the primitives provided; and it should be incremental in that it does not disrupt the
versatility and efficiency of the sequential architecture.

Active Messages communication architectures [VE93], described in the next section, have
been show to satisfy these criteria. Active Messages exposes the efficiency of the underly-
ing communication micro-architecture as much as possible, and doesn’t make the mistake
of trying to implement functions that really belong in a communication model.

Active Message communication architectures implemented in software on top of existing
communication micro-architectures have been successful in reducing the software over-
head of communication by more than an order of magnitude. It seems unlikely that any
further improvement can be made as long as the network interface is implemented as ex-
ternal circuitry complementing a standard microprocessor. In fact, if the current trend
in microprocessor design continues, first- and second-level caches will increasingly be
integrated on-chip; an external network interface will be pushed logically farther from
the CPU core, and the cost of communication will increase. The most direct way to

) Dist

A1

il

“lor
opecial

|

counteract this trend is to integrate Active Messages with the processor instruction set
architecture.

In this project, an Active Messages communication architecture implementation is de-
fined competely in the actual instruction set of a microprocessor, i.c. zero or minimal
kernel, run-time, or library code is required to complete the Active Message layer. Per-
haps this could also be interpreted as the design of a communication micro-architecture
such that an Active Message communication architecture maps to it in a direct, almost
trivial, way. The resulting network interface exhibits very low overhead for all commu-
nication operations, including sending messages, receiving messages and dispatching to
the appropriate handler, and disabling message reception to form critice? sections.

The rest of this report is organized as follows. Section 2 describes why Active Messages
makes a good communication architecture. Section 3 describes and justifies the design
decisions made in this implementation of Active Messages. In Section 4 this implemen-
tation is compared to previous research involving the integration of a network interface
into a CPU. Section 5 describes ongoing research related to the implementation of the
architecture described in this report. A brief conclusion is found in Section 6, which is
followed by the bibliography, and finally the network interface specification in detail is
found in Appendix A.

2 Active Messages

2.1 The Main Idea

“Active Messages” is a philosophy, or class of communication architectures, analogous to
the term “RISC” for a class of computational architectures. To quote from [VECGS92)
(see also Figure 2),

Active Messages is an asynchronous communication mechanism intended to
expose the full hardware flexibility and performance of modern interconnec-
tion networks. The underlying idea is simple: each message contains at its
head the address of a user-level handler which is executed on message ar-
rival with the message body as argument. The role of the handler is to get
the message out of the network and into the computation ongoing on the
processing node. The handler must execute quickly and to completion.

For some parallel operations, enough may be known about the communication patterns
that increased performance can result from breaking some of the Active Message con-
ventions — for example, by performing some real computation in an Active Message
handler. While such use of the architecture described in this report is possible, the
design has been optimized for conventional Active Messages.

3

Figure 2: Active Message in the CNS-1. The primary computation on Node B is asynchronously
interrupted, and control is transferred to the address contained in the first word of the message
(Adlr). The code at Adlr takes care of integrating the message data (D) with the primary com-
putation.

2.2 Support of Communication Models

An Active Messages communication architecture, just like a RISC instruction set, is not
meant for direct use by the application programmer. Rather, Active Messages is meant
to be used by a parallel language or communication library to provide a communication
model to the application programmer. Active Messages has been shown to efficiently
support most common communication models. This section contains examples of how
Active Messages can support both shared memory and dataflow models, and point out
where hardware support for Active Messages is especially useful. The goal of this sub-
section is to justify hardware support for Active Messages, based upon two points:

1. that performance will benefit significantly from hardware support of Active Mes-
sages, and

2. that the Active Message communication architecture can support most communi-
cation models efficiently, and thus there is no loss of flexibility by implementing it
in hardware.

Earlier examples demonstrated that trying to support any more functionality than that
provided by Active Messages in hardware is often a mistake. The conclusion to be drawn

is that Active Messages is an optimal communication interface to fix between hardware
and software.

2.2.1 Shared Memory and Split-C

Split-C [CDG*93], a parallel extension to C developed at UC Berkeley, is a good example
of the use of Active Messages to support a shared-memory programming model. The
description here is based on the implementation of Split-C for Thinking Machines’ CM-5,
which is similar to the version envisioned for the CNS-1. However, Split-C has been
ported to widely varying architectures with accordingly varying implementations, as
described in [Lun94).

In the Split-C model, there is one persistent thread per processor. Split-C uses a global,
two-dimensional address space; each global address is a <processor, offset> pair. Global
pointers can be dereferenced just as normal pointers in C can, so that *gp = 1v copies
the contents of local variable 1v to the location specified by the global pointer gp. The
reverse operation is performed by 1v = »gp. Normal (local) pointers are still available
and should be used for work local to a processor, since accesses through global pointers
will incur an extra cost to check whether the location is local or remote, even if the
location is local.

Split-C also allows for split-phase assignments as shown in later examples, allowing the
overlap of global operations with local computation. Simple counters are used to deduce
when all operations have completed for synchronization purposes.

Split-C is implemented as a modification of the GCC compiler along with a runtime
system. The runtime system for Split-C consists of a collection of library routines and
Active Message handlers, contained in Libsplit-C.

For example, consider Processor A performing a put (an asynchronous, acknowledged
write) to a location contained in' Processor B’s memory. During parsing the Split-
C compiler replaces the put syntax, *gv := lv, with an Active Message send. Thus
Processor A actually sends a put Active Message containing the value and address to
Processor B. Processor A returns to computation immediately. The put handler on Pro-
cessor B writes the value contained in the message to the specified location, and then
sends a put reply message back to Processor A. On Processor A the put reply handler
for this message increments a counter to acknowledge the completion of the put. Some
time later Processor A may execute a sync call, which busy-waits on the counter until
all puts have been acknowledged (non-blocking checks of the counter are also possible).

Support for more complex shared memory operations is also straightforward using Active
Messages. A fetch-and-add operation, for example, is implemented using a fetch-and-
add handler on the node containing the counter (see Figures 3, 4). Note that since
Active Message handlers execute to completion, no special effort is required to ensure

5

e ———————————————————————

Figure 3: Fetch-and-Add, Part One. Node A has sent a request message containing both a
pointer to the fetch-and-add request handler (fa) and a pointer to the desired counter on Node B
(loc). In the picture, Node B is in the process of handling the request but has not replied yet.

Node B:

Node A:

Figure 4: Fetch-and-Add, Part Two. The reply message containing the value from Node B
(tmp) has been received at Node A, where a reply handler has been invoked. The reply handler
stores the value and sets a flag. After the reply handler has completed, the primary computation
on Node A notices that the flag has been set, and then can use the returned value.

the atomicity of the fetch-and-add operation.

In addition to these integer or floating point variable remote memory operations, Split-
C also provides bulk transfer primitives, which are optimized for medium to large data
transfers.

Benefit of Hardware Support

In comparison to software implementations, the low overhead of hardware dispatch to
the Active Message handler greatly reduces the number of cycles consumed for handling
messages, leaving more cycles for the primary computation. (For comparison, the total
overhead using CMAM on the CM-5 for sending, receiving, and dispatching to handler
for a 5-word message is approximately 100 cycles, while with the T1 the total overhead is
expected to be less than 10 cycles for any message size up to the maximum of 37 words.)
A related benefit is that round-trip latencies are greatly reduced, meaning that it will be
easier for the Split-C programmer to find computation to overlap with remote memory
accesses. Even when applications need fine-grained data sharing, hardware support of
Active Messages combined with Split-C’s exposure of local vs. global references will allow
performance to approach that possible with a hardware-implemented shared-memory
model?, while allowing much greater flexibility. Coarse-grain computations also benefit
from hardware support; the bulk transfer primitives will be able to use vector Active
Messages (described in the next section), which can transfer up to 32 words of data with
the same small overhead.

Another advantage is that a Split-C compiler knowledgeable of the hardware support for
Active Messages will be able to make optimizations that cannot typically be made if the
communication operations are encapsulated in library routines.

2.2.2 Message-Driven Models

Active Messages running on conventional microprocessors has also been shown to sup-
port message-driven computation models at least as efficiently as processors designed
specifically to support those models. This is made possible by the use of the Threaded
Abstract Machine (TAM) model as a compilation target for dataflow-style languages
[CGSvE93]. TAM exposes the scheduling of threads to the compiler. Related threads in
the same activation frame share the same processor state. By scheduling related threads
consecutively, the overhead of thread switching is greatly reduced, while the benefits of a
large register file and RISC instruction set are available to the threads. Such intelligent
scheduling would likely not be possible if the general thread scheduler were built into
the hardware.

2This will not be true in cases where coherent caches are very beneficial, such as when data is written
once and then read several times by another random processor. Software caching can be useful in

some cases, but will not give the same level of performance as would be achieved with hardware cache
coherence.

In the TAM implementation, Active Messages are used for data movement and the
associated synchronization typical of dataflow. The tailored Active Message handler
stores the data at a specified offset in a specified frame, records this action in a counter,
and possibly performs a scheduling operations if a thread becomes enabled. The Active
Message handler itself does not perform the computation, and thus does not require
much context preserving overhead. In TAM, events affecting scheduling occur often, but
do not cost much. Scheduling actions (changing threads) occur less often but still do not
cost much, and finally frame switches occur relatively rarely.

Benefit of Hardware Support

The paper [SGS*93] evaluated support mechanisms for TAM and came to the conclusions
that hardware support can significantly improve performance as long as the interaction
of all components is considered. Specifically, integrating the network interface with the
processor register file and supporting fast dispatch to user-level handlers can both signifi-
cantly reduce communication overhead (a first-order effect for fine-grained computation),
a8 long as the operations for synchronization and atomicity are similarly efficient. This
lends support to the claim that thoughtful hardware support for Active Messages will
lead to significant performance benefits for fine-grained computation.

2.2.3 Conclusion

In this subsection a brief description has been given of how Active Messages can effi-
ciently support two of the common communication models. By providing a clean, simple
mechanism rather than attempting a complete solution, Active Messages allows each
programming model to use the native communication resources in the way best suited
for it. This combination of efficiency and flexibility make Active Messages an optimal
platform to fix in hardware. Putting any more functionality in hardware would reduce
flexibility and risk a semantic clash, without much performance benefit. Putting less
fanctionality in hardware would reduce performance without giving a significant gain in
flexibility.

2.3 Four Key Issues

As mentioned above, Active Messages describes a class of communication architectures.
In fully describing a specific communication architecture implementation based on Active
Messages, the designer must address four key issues concerning the relationship to the
underlying communication micro-architecture:

¢ Data Transfer into and out of the network

¢ Synchronization between message arrival and computation

8

¢ how to deal with Send Failure due to network congestion, without risking dead-
lock

¢ Network Virtu..I' ation ~ how to share the network between multiple user pro-
cesses

If the Active Message communication architecture is implemented as a software layer
on top of existing hardware, the resolution of these issues is heavily influenced by the
communication micro-architecture of the machine. In the case here, there exists the
laxury that design of the communication micro-architecture can be guided by the desired
Active Message communication architecture that it will support. This gives the frecdom
to make choices regarding the four main issues based on overall performance, rather
than having to contort the Active Messages communication architecture to fit existing
hardware. In the next section, the choices made will be examined in detail.

3 Implementation Choices

In designing a communication architecture based on Active Messages, there are a number
of key issues to be addressed. Von Eicken lists them as data transfer, synchronization,
send failure, and network virtualization. The choices made in the handling of these
issues, along with additional implementation choices regarding the dispatch mechanism
and multicast support, are described and justified below. First, however, a brief summary
of how the communication architecture fits into the MIPS-II instruction set architecture
will be given, followed by a short description of the context of this project.

3.1 Overview

This projects defines a communication architecture to extend the MIPS-II instruction
set architecture [Kan88). The network interface is logically part of a coprocessor. In the
specification in the appendix, coprocessor 2 (COP2) is used; this is an arbitrary choice
and may be changed. Other specific details such as instruction encoding and network
interface control register numbering may also change.

New instructions for sending messages and returning from handlers have been added in
the coprocessor opcode space. Existing MIPS instructions are used for transfers to and
from network interface control registers, and for branching on the coprocessor condition
flag. The MIPS-II ISA specification states that coprocessor operations should not affect
CPU state, and that data transfer between the CPU and the coprocessor should occur
only through MFCz/MTCz instructions. These specifications are not strictly followed;
violations include:

e CPU control flow is asynchronously preempted due to the arrivals of messages and
other events.

e Arriving data is accessible in CPU registers, and outgoing data is taken directly
from CPU registers.

¢ Some of the CPU registers have been triplicated; which copy is visible to the
processor depends on the context: primary computation, request handler, or reply
handler.

To give a very brief « mmary of how inter-processor communication works, a processor’s
SEND instruction constructs and sends a packet containing (i) a header indicating the
destination node, (ii) a pointer to the desired handler for the message on the destination
processor, and (iii) data from processor registers. At the destination node, the arrival of
the packet causes an inlet event, which (all in hardware) saves a portion of the current
state of the processor, places the data from the packet into the appropriate processor
registers, and starts execution of the handler specified in the packet. The handler is ended
by an HRET instruction, which returns the processor to its state before preemption.
Message reception can be disabled by clearing an event enable bit in a coprocessor
control register, allowing cheap construction of critical sections. While message reception
is disabled, messages will back up in the network interface an ! eventually back up in the
network.

3.2 Context

This project is one small component of the construction of the CNS-1 Connectionist
Network Supercomputer, a large-scale multicomputer being constructed wnth the target
application of neural network algorithms.

The building block of the CNS-1 is the T1 microprocessor, an implementation of the
Torrent architecture. This architecture integrates a MIPS scalar processor core along
with a fixed-point vector unit, the network interface described in this report, and a mesh
router® The T1 processor has 128b-wide path to the local memory on the CNS-1 node.
The memory will be high-performance DRAM, such as Rambus or Synchronous-DRAM,
providing a large memory bandwidth.

The topology of the CNS-1 data network is a two-dimensional mesh that wraps around in
one of the dimensions. This topologv maps directly to its physical packaging, a cylindrical

3 Although the T1 has integrated the router to achieve better density on the CNS-1 node, a alternative
implementation would have a single network link leaving the processor, which would connect to a separate
routing chip, as with the *T project [PBGB93]. This would allow the same processor to be used with a
variety of different network topologies and technologies, and also reduce the main chip’s pin requirements
for the network, with only a small latency penalty.

10

Torrent
Processor
Mesh Network | Hoops
Connections
j Hydrant VO
Hoop
Quad Torrent Module To Disk Subsystem
To Host Workstation
To Analog VO
Figure 5: CNS-1

tower (see Figure 5). I/O to the computing nodes is performed through special interface
nodes along the bottom of the cylinder. In addition to the data network, there is a
diagnostic network which is accessible to the kernel only.

Although the CNS-1 is being built with the main goal of performing neural network
algorithms at supercomputer speeds, it should find a broad range of applications. The
T1 processor contains a standard MIPS processor core (although some software emulation
is required for IEEE floating point), and the network interface specified in this report is
general purpose. Since this design will be implemented as a real machine, the advantages
and disadvantages of this communication architecture can be quanatitatively compared
against others in the context of real applications and operating systems, providing new
insight for parallel systems design.

8.3 Data Transfer

One of the major points of an Active Message implementation is the data placement
— where it is sent from and where it arrives, as seen by the user. There are many
possibilities regarding which part of the storage hierarchy data is transferred from/to.
From closest to farthest from the CPU, end points of data transfer can be:

11

¢ processor registers
¢ COprocessor registers
.dmw:he

¢ memory-mapped I/O — the network interface is mapped into the memory space of
the processor, and is acceesed using load/store instructions (bypassing the cache).

¢ memory buffers (i... DMA) — the processor gives the network interface the address
of a buffer in memory; then the network interface autonomously accesses the buffer
over the memory bus while the processor continues its computation (arbitration
between the processor and network interface for the memory bus is required).

In [HJ92] the performance differences between these varicus options were quantitatively
studied. They found that sending and receiving messages from processor registers re-
sulted in the best performance. Moving the data back and forth to coprocessor registers
would likely require an additional cycle per word at each end of the transfer. Cache
and memory-mapped end-points of data transfer incur additional costs for accessing
busses. If the data’s uitimate source and destination are CPU registers, then a DMA
data transfer will add even more latency for accessing memory.

Not surprisingly, having to go through the kernel to access the network interface incurred
an additional substantial penalty.

The study also noted that random-access mechanisms were superior to FIFO mecha-
nisms, especially when replying to messages or forwarding them. This is because with
thoughtful design of message formats, much of the data can be reused without being
moved. Also, an immediate send retry is trivial since the message data is still there; just
execute the SEND instruction again. With a FIFO interface, the entire message may
have to be pushed out to the network interface again.

Transferring data to/from processor registers, while providing the best performance, is
the most intrusive to the microprocessor architecture, requiring a new chip design; the
other schemes can be implemented by adding external circuitry to a normal commodity
microprocessor. A related drawback of the intrusion is its impact upon the use of exist-
ing software tools. For example, is might be that a handful of registers would have to be
reserved for incoming data, and thus be off-limits for computation - not only would com-
putational performance suffer from not having as many registers available, but compilers
would have to be altered.

Despite these potential difficulties, it was decided to transfer data directly to/from pro-
cessor registers for the sake of performance. The demands of supporting both fine-
and coarse-grained parallelism, along with the increasing computational performance of
microprocessors, necessitate an on-chip network interface. In particular, the T1 micro-

12

processor with its vector unit requires a similarly high-performance network interface to
remain balanced.

The registers used for data transfer are the four argument-passing registers and the frame
pointer register, by MIPS convention. A SEND instruction uses the contents of (the
currently visible copies of) these registers to construct the data portion of the outgoing
packet. Upon packet arrival, the scalar data of the packet is placed directly into those
registers. The use of the argument-passing registers highlights the similarity between
Active Messages and RPC calls (the key differences are that Active Message handlers
neither perform serious computation nor automatically return a resuit). The addition
of the frame pointer extends this to a remote closure invocation for use in object-based
programming ~— the object, the method, and the arguments are specified in the message.

In order that an arriving message does not overwrite data being used by the primary
computation, there are additional copies of the registers used for data transfer (see
Figures 6 and 7, and also Figures 3 and 4). Which set of these registers are visible, i.e.
mapped into the register file, depends on the context of the CPU: primary computation,
request handler, or reply handler (request vs. reply is discussed in Subsection 3.5). At the
point when control is dispatched to a message handler, the message data is transferred
into the the register set of the new context. Restrictions on handler nesting prevent
a message from overwriting a previous message before it has been used; this is further
discussed in Subsection 3.5. When the handler ends and control is returned to the
previous computation, the registers of the previous context once again become vigible. A
request handler can compose a new reply message (possibly reusing data from the request
message it is handling) without having to preserve the registers it uses. In addition to
the registers used for data transfer, two temporary registers are also replicated for use
by handlers, and their contents are preserved between handler calls.

This scheme has two distinct performance benefits. Handlers will not have to perform
callee-saving of register contents to memory as long as they can operate within the
replicated register subset (this should be true, since Active Message handlers are not
supposed to perform any substantial computation). Also, handlers do not have to load
incoming message data from coprocessor registers, memory, or memory-mapped 1/0 —
the data is immediately usable in computation. Yet primary computation sees no dif-
ference in its register file — sequential efficiency will not suffer, and existing compilers
can be used. The resulting communication architecture is both efficient and incremen-
tal: low overhead communication has been achieved without disturbing the sequential
architecture.

Note that the majority of the CPU registers are still shared between the main code and
the handler code; this allows an intimate coupling between the primary computation and
the handlers, which was found to be important in the [SGS*93] study.

One interpretation of this design is that arriving message data is placed in coprocessor
registers, and that these registers are mapped into the CPU register address space for

13

Registers that are
always accessible
7
' Registers accessible
only while CPU s
executing normal code
15
16 Registers acoessible only
when CPU is executing a
n Registers accessible
- only when CPU is
% executing & high priority

Figure 7: Data transfer. The dark-shaded copies of registers are not accessible in the states
shown (register $29 not shown to simplify picture).

14

the duration of the handler. If this mapping were not implemented, then the design
would degenerate to the less intrusive but less efficient design using coprocessor registers
for data transfer endpoints.

In the T1 microprocessor, the vector unit provides an extension to this mechanism for
large data transfers. In addition to the 5 words from the CPU registers, a send can
optionally include the contents of a vector register (up to 32 words) in the message being
sent. At the receiving node, the data appears in vector register $vxi. Again, each event
context (primary computation, request handler, and reply handler) has its own copy
of this register to prevent live data from being overwritten. The high-bandwidth path
between the vector unit and the memory system makes vector load-send-receive-store a
very efficient way of performing the transfer of large data blocks between the memories
on different nodes.

Also, large multi-message data transfers are simplified by the fact that the architecture
guarantees in-order delivery of messages between any pair of nodes. The implementation
of the CNS-1 network, which uses dimension-order routing on a two-dimensional mesh,
guarantees this behavior. Even so, it was not clear that it should be part of the specifi-
cation, because a different implementation may wish to use adaptive routing or multiple
virtual channels on the mesh, or perhaps even change the topology to a fat-tree network,
none of which can guarantee in-order delivery. However, in a project performed jointly
between the graduate computer architecture and VLSI design classes at UC Berkeley
it was shown that packet reordering can be performed efficiently in hardware in the
network interface [GWC93]. Thus even if a new network transport mechanism delivers
packets out-of-order, in-order delivery as seen by the software can be guaranteed with
the addition of some circuitry.

By transferring data directly to/from processor registers, problems with cache inco-
herency are avoided. The main processor and the coprocessors all access memory through
the same cache, so that they have a consistent view of memory. Since any multiple copies
of data on different nodes are created explicitly in software, the burden of consistency
management in such cases is also in software. A somewhat related problem, however,
may occur if the compiler for the primary computation does not take the actions of han-
dlers into account. For example, consider a situation where the primary computation is
busy-waiting on a flag that will be set by a handler:

$Li: 1w $6, flag($sp)
nop
beq $6, $0, $L1
nop

An optimizing compiler, seeing that location flag is not modified within the loop, might
move the load outside of the loop:

15

lv 86, flag($sp)

nop
‘Li: b“ “n ’ou ‘Li
nop .

Now even when the handler writes a non-zero value to location flag in memory, the
primary computation will not see it. The most straightforward way of avoiding this
situation in C is to declare the variable flag to be volatile. This tells the compiler
that the value of the variable may change in ways not known to the compiler, and will
prevent the compiler from making optimisations leading to incorrect behavior. Better
yet, the compiler should use one of the registers shared between the handlers and primary
computation for the variable flag.

3.4 Synchronization

There are two basic ways an Active Message implementation can deal with synchronizing
arriving Active Messages with the primary computation executing on the node. Under an
interrupt-driven model, incoming messages can interrupt the processor asynchronously
as soon as they arrive. Under a polling model, the processor periodically checks the
network to see if a message is waiting, and if so extracts and handles it.

With the interrupt-driven model, messages are usually extracted immediately from the
network, resulting in both reduced network congestion and also lower average round-
trip latency for request-reply exchanges. Another advantage is that there is no need for
the user or compiler to explicitly add polls to the code doing the primary computation.
However, when an operation must be performed atomically with respect to message
arrival, such as the modification of a global data structure, some technique must be
used to temporarily disable message arrivals. The mechanism for forming these critical
sections should be inexpensive in terms of cycles consumed.

With a polling model, the formation of such critical sections is trivial; simply don’t poll.
The burden of adding polls can be reduced if the network is always polled during send
attempts; then polls only have to be explicitly added to computation-only phases of
program execution. Polling may have the benefit that many waiting messages can be
handled by one poll, reducing the number of context switches which may be costly in some
implementations. Also, it may be easier for a programmer to manage the complexity of
interacting pieces of code (primary computation and multiple handlers) if the possible
asynchronicity is restricted.

There was no need to choose between the two models. Interrupt-driven message reception
is the more general mechanism, and can emulate a polling mechanism. This is done by
simply having mesaage reception disabled by a default. A poll is then emulated by the
sequence “enable message reception, disable message reception”. It is important that

16

these enable/disable operations are inexpensive. This is true in this design; message
reception is disabled or enabled simply by moving a zero or one, respectively, to the event
enable register. Thus the cost of forming a critical section in an interrupt-driven model
is identical to the cost of performing a network poll in a polling model — 3 instructions.
Hasards involving transfers to and from network interface control registers are not known
at this time; there may be some delay slots in the code fragments that would have to be
filled with unrelated instructions or with nop instructions. See Figure 8.

#define BNTER_CRIT \
CTC2 $event_enable, $0 \! clear event enable bit
-~=delay slot ?——— { wait for it to take effect
#define EXIT_CRIT \

ORI $t1, $0, 0x0001 \
CTC2 $eovent_enable, $t1 ! set event enable bit

#detine NI_POLL \
ORI $t1, $0, 0x0001 \
CTC2 S$event_enable, $ti \! set event enable bit
-~-delay slot ?—- \! wait for it to take effect
CTC2 S$event_snable, $0 \! clear event enadle bit

Figure 8: Synchronization Code Fragments

3.5 Send Failure

Any network can get congested to the point that it cannot accept any more outgoing
messages from a node. What is done by the node in this situation requires careful design.
The result otherwise could be either deadlock or unbounded buffering requirements.

The solution adopted here is almost identical to that used by CMAM, the Active Mes-
sages implementation on the CM-5. There are two logically disjoint networks, a request
(low-priority) network and a reply (high-priority) network. A handler for a message from
the request network can be preempted only by a message from the reply network. A
handler for a message from the reply network cannot be preempted at all. This allows
at most the nesting of two handlers; this small fixed amount of nesting allows for the
implementation of state preservation in hardware.

A request handler is allowed to loop trying to send ieply messages? until it succeeds; a
reply handler is not allowed to loop indefinitely for any reason, but must execute quickly
to completion.

¢ Reply message simply means a message sent on the reply (high-priority) network. A reply message
can be sent to any node, not necessarily the node that sent the request message being handled.

17

The restricted nesting of handlers is enforced in the CM-5 implementation by simply
not polling the request network while executing a request handler, and not polling at
all during a reply handler. The hardware solution here is similar, but adapted to the
interrupt-driven synchroniszation. At the beginning of a request handler (i.e. at the
inlet event of a request message), the low-priority event enable bit is automatically
cleared, disabling the reception of any other request messages but allowing the reception
of reply messages®. At the beginning of a reply handler (i.e. at the inlet event for an
incoming reply message), the event enable bit is cleared, disabling the reception of any
other message. At the end of the handler, the HRET (return from handler) instruction
automatically restores these enable bits to their prior values.

If the network cannot accept another message when a SEND instruction is executed, the
coprocessor flag is cleared to indicate a failure, and execution continues. This is different
than the CM-5 software implementation of Active Messages, in which a send will loop
indefinitely until it is successful pushing the message out to the network. A “failable”
send has the drawback that requires additional instructions to test for its success. In
this architecture, however, this test is typically only one instruction, a BC2F (branch on
coprocessor flag false) instruction.

Having a failable sends can be useful in some situations. With retry-until-successful
sends as in CM-5 Active Messages, handlers of request messages can only send reply
messages, and handlers of reply messages cannot send any message. With a failable
send software can attempt any priority send from any priority handler, as long as it is
prepared to give up after a fixed time and take alternate actions.

Another possible way of dealing with send failures that was briefly considered is to invoke
a special fault handler at that time. This approach is attractive because it eliminates the
need to check for success after each send. It is especially attractive when send failures
are rare. This approach is not taken here for a number of reasons. The first is that the
cost for the check of send success is exceptionally cheap in the T1 — one instruction.
Also, it is expected that the action to be taken on a send failure may be different in each
case; having one global fault handler would be awkward in this situation.

Also, due to the efficiency of the network interface, a rapid sequence of sends may exceed
the network bandwidth. Thus transient send failures may be common in situations where
a node is doing nothing other than sending out large quantities of data. Trapping to a
fault handler in such situations would not be appropriate.

Some applications may only need one priority because of characteristics of the communi-
cation pattern or because high-level flow control is used to bound the amount of message
buffering required at each node. With such applications it would be desirable to get

SThis differs slightly from the CM-§ implementation, in which request handlers are atomic except
when they attempt to send. In this implementation, a request handler that must execute atomically
with respect to reply handlers must explicitly form a critical section. This is not a large penalty due to
the low cost of forming critical sections.

18

the full physical bandwidth of the network while only using one priority. If the two
priorities are implemented with physically disjoint networks, the applications may have
to artificlally split their communication between the two priorities in order to make full
use of the communication resources. With the CNS-1 , however, the same physical links
are demand-multiplexed between the two priorities; if only one priority is being used, it
gets the full physical bandwidth. This allows applications to use the two priorities in
whichever way is natural while making optimal use of the communication resources.

3.6 Network Virtualization

The CNS-1 is designed for single-user, batch-style processing; no timesharing or space
partitioning among multiple users will be done. Thus network virtualization is not an
issue; however, this subsection examines what changes would have to be made in order
to support network virtualization.

In a general communication architecture, it would be desirable to perform some type of
timesharing. The most straightforward way of doing this would be to adopt the approach
taken with the CM-5: gang-schedule all of the nodes synchronously [L+93]. The network
must be drained of messages when a process is preempted. During the draining phase,
each message in the network simply goes to the nearest node, whether or not that is its
destination; this limits the maximum amount of buffering done at any one node to V/N
rather than V, where V is the total network volume and N is the number of nodes.

To put hooks in for this type of operation, there would have to be a way for the kernel
to set a flag in the network interface that causes all user packets to drain to the nearest
node, where the kernel could store them in memory. These messages would then be
resent when that process resumes control. Some special precautions may be necessary
due to the possibility of send failures at this point (the network may fill up before the
kernel can put all the buffered packets back on the network; the user program must be
run for a short while to consume some of the messages before the kernel can send the
remainder of the buffered packets). Also, some mechanism must ensure that even after
preemption and subsequent rescheduling, a process’ messages still satisfy the in-order
delivery specified in the architecture.

Of course, there would have to be some way for the kernel on each node to know that
it is time for a context switch. The simplest way is for each kernel to set its own timer,
and when the quantum is over, drain the network of user packets so that the kernel
can communicate with the other kernels or the host. If preemption is triggered from
an external source, then there must be some reliable way to communicate with each
kernel. It the CNS-1 this is not possible using the data network, since a user program
could deadlock both network priorities. The CNS-1 would be able to perform such
signaling to the kernels using the TSIP network, a separate diagnostic network similar
to JTAG. Another option would to be to add a new priority on the data network reserved

19

exclusively for kernel use.

3.7 Protection

Even though the nodes in the CNS-1 support only a single user (no timesharing), a
protection mechanism is still necessary. While there is no need to make sure that a user
does not corrupt another user’s code or data, the single user must still be prevented from
accessing the resident kernel’s code and data. Why do we need a protected kernel at all,
if the nodes are being used by a single user? The main reason is that nodes will directly
access I/O devices, and such accesses must be regulated by the operating system; hence
the need for a protected kernel. In addition, a debugger must be protected from errant

writes of the program being debugged.

The memory protection mechanism for the planned implementation of the T1 architec-
ture is straightforward: a write barrier is specified in a coprocessor 0 (COPO) register,
and any attempt to write past this barrier while in user mode results in an exception.

The extension of this protection across the network is similarly straightforward. When a
message is sent, a bit in the packet indicates whether the sending processor was operating
in user or kernel mode. This mode is the mode the receiving node runs at while handling
the message. If a packet sent at user mode contains a handler IP that points to code
in kernel space, an address error exception will occur when the fetch of the first handler
instruction is attempted on the receiving node. This prevents user code from invoking
kernel code (or modifying kernel data) on another (or the same) node by way of the
Active Message mechanism.

In general, message reception should be disabled while the processor is running in kernel
mode. This is because even though a user-level packet arriving at a node will cause the
processor to switch to user mode, preventing invalid memory accesses, the handler may
still corrupt any values the kernel has stored in processor registers.

The kernel/user bit is used only when the message has arrived at the destination; kernel
packets get no special priority on the network. If the application program has deadlocked
both priority networks, not even kernel packets can get through. For debugging in such
situations, the kernel can be accessed via the TSIP network.

3.8 Events vs. Exceptions

Some may question the wisdom of adding a completely new event mechanism to the MIPS
instruction set architecture. Why can’t a message arrival simply cause an interrupt as
is already defined?

20

The main reason is performance; using the existing interrupt mechanism would require
first going through the generic kernel exception handler, which would then have to dis-
patch to the Active Message handler. A well-tuned kernel dispatch routine could possibly
execute in 15-20 cycles; a more realistic estimate would be at least 100 cycles. The newly
defined event mechanism normally operates completely at user level and dispatches di-
rectly to the required handler, with an estimated overhead of 3-5 cycles.

At a more basic level, events and exceptions serve different purposes. Events are intended
to be an integral part of computation, occurring frequently and at user level, while
exceptions signal a situation where the kernel must get involved.

3.9 Extensions

The implementation described up to this point is a complete Active Messages communi-
cation architecture. However, because of known characteristics of the intended applica-
tions for the machine being built, some extensions to accelerate certain operations or to
provide more functionality have been added in a way consistent with Active Messages.

Other Events

In addition to inlet events caused by arriving messages, there are two additional events
that are anticipated to help facilitate efficient use of the communication network.

The first is an outlet event. This occurs when both the network is ready to accept
another additional outgoing message and the outlet enable bit is set. This is analogous
to an interrupt-driven message reception at the destination (having the sending node
periodically attempt to send would be analogous to a polling receive at the destination).
This will be useful in the case of large memory-to-memory data transfers occuring in the
background.

The second additional event is the timelet event. This occurs when both the timelet
enable bit is set and also the free-running timer matches the count register (both the
timer and count register are in the network interface and are user-accessible). Although
this function is not strictly communication-related, it is anticipated that it may serve a
function similar to the outlet event.

Hardware Implementation of Handlers

The inclusion of hardware-interpreted Active Message handlers does not conflict with
the Active Message philosophy, as long as it does not interfere with the efficiency and
versatility of the basic communication architecture. No hard-wired handlers are defined

21

in this specification; however, the implementor is free to define some. To allow for
this, handler addresses in the range 0OxFFFF0000 - OxFFFFFFFC (i.e. small negative
integers) are reserved for implementation-specific hardware-interpreted handlers.

When considering the addition of a hard-wired handler, a RISC approach should be
taken: unless it can be shown to result in at least a 1% overall improvement of the
computer’s performance, it is not worth the trouble. The efficient hardware dispatch
to user-level code means that a short software handler may require a total (dispatch,
execution, and return) of only about 10 cycles, so it is unlikely that handler invocation
will occur frequently enough that saving a few cycles per invocation will result in a total
performance improvement of more than 1%.

One possible advantage of using hardware-interpreted handlers is the elimination of com-
petition between handler code and primary computation code for space in the I-cache.
However, such competition may be eliminated by other means in the implementation,
such as having a separate lockable I-cache for handler code.

Possible Hard-wired Handlers

One possibility for hard-wired handlers would be to handle remote memory accesses
such as fetches. A fetch request packet would contain a memory address to fetch, the
address of the requesting node, and the pointer to the handler on the requesting node
that will handle the reply. The network interface at the node holding the memory
location(s) would automatically access the cache or memory to retrieve the value(s)
and send it back in a reply active message. Because much flexibility is lost in dealing
with synchronization, the hard-wired handlers would probably only be used in bulk
transfers. A sequence of messages using a hard-wired handler would likely be followed
by a message using a software handler, which would increment the correct counter or
return an acknowledgement message to i.dicate the completion of the transfer.

If messages were limited to a payload of the contents of five scalar registers, such hard-
wired handlers could resuit in much more efficient memory-to-memory transfers of large
blocks of data. However, due to the efficiency of the existing vector message transfers, a
large amount of data can be transferred while stealing only a few cycles from the CPU;
thus there is little incentive for adding hard-wired remote memory access handlers.

Another possible function that could be handled in hardware is forwarding, or indirection.
The packet would contain the address and handler of its ultimate destination, but would
be sent to a different node (say Processor X). Processor X would read in the packet, see
that its handler IP indicates that it should be forwarded to a different node, reformat the
packet with its new network address and handler, and put it back on the network. This
function would be useful in some randomized algorithms, or whenever the user wants
more control over the path taken by packets.

22

Multicast

Many applications require the dissemination of data from one node to many other nodes.
Such multicasts can be handled simply by having the source send a series of identical
messages, one to each receiving node. If this simple approach is found to be consuming
too much bandwidth and/or time (to send the repeated messages), a tree distribution
scheme can be set up in software: the source sends the message to two other nodes; each
of these nodes resends the messages to two other nodes, and so on.

With hardware support for nsulticasts, latency and bandwidth can be reduced below that
possible with either of the software methods described above. However, the hardware
support for multicast should not have a negative impact on normal unicast traffic, or
else overall performance may actually decrease. The multicast support must be useful
yet also simple and easy to implement.

The CNS-1 multicast support mechanism possesses these characteristics. The mechanism
is simple: drop of a copy of the packet at every node that is passed on the journey from
the source to the destination, not including the source itself. The topology of the CNS-1
is basically a two-dimensional mesh. The path between two nodes in the same column
or same row is guaranteed to be the shortest-path straight line, but if the source and
destination are in both different rows and different columns, the route is not specified.
Thus the behavior of multicasts is defined only when the source and destination are ir
the same row or the same column. This leaves the implementation some leeway in the
exact routing protocol used, and in fact makes no restrictions at all on unicast routing.

With this mechanism, the distribution of data to an entire row or column of nodes takes
only as long as it would take to send a unicast message to the far node, and consumes
exactly as much network bandwidth. To cover a two-dimensional patch of processors, a
two-step distribution would be used (see Figure 9).

Actually the CNS-1 mesh wraps around in one dimension (see Figure 5). This compli-
cates sending a multicast to an entire ring of processors; the “shortest-path straight line”
between any two nodes can cover at most half of the nodes on a ring, because the mes-
sage will go the shortest way around the cylinder. A node wanting to multicast to every
node on a ring will have to send two multicasts, one each direction around the cylinder.
Another possibility is to modify the routers so that when a node sends a multicast to
itself, it will actually travel all the way around a ring.

Using this mechanism forces the software to be aware of the network topology, the
relative positions of the nodes in the network, and part of the routing algorithm. These
are parts of the communication micro-architecture and should not really be visible in the
communication architecture; however, most of this information is “performance visible”
and would have to be known in order to optimize for locality even for normal unicast
communications.

Figure 9: Two-phase multicast to two-dimensional region. S signifies source of message; M
signifies reception of multicast copy; D signifies actual destination of message. In actuality,
receiving nodes can not tell whether or not they are the final destination, but they can tell
whether the message received is part of a multicast or not. The target region for the multicast
does not have to be rectangular.

For each basic send instruction, a multicast version has been added to the instruction
set. Each multicast instruction behaves identically to its non-multicast version except
that the message is received at each node along the path that is traveled.

The only change in the network interface registers is that a new bit field has been added
to the status register; this bit indicates whether or not the packet that is currently being
handled was part of a multicast.

3.10 Conclusion

In this section many of the design details of the T1’s Active Message communication
architecture have been described along with some of the reasoning behind each decision.
The resulting architecture is straightforward to use and lends itself to an efficient VLSI
implementation. Although the exact numbers will not be known until the design of
the T1 is complete, it is estimated that a message send (normal or multicast) of up to
37 data words will cost approximately 5 cycles; message reception and the dispatch to
the appropriate handler will also have an overhead of about 5 cycles (neglecting I-cache
misses). Forming a critical section or performing a network poll would cost less than 5
cycles.

For more details of the interface between software and the network interface, refer to the
specification itself, included as Appendix A.

24

4 Previous Research

This project, the network interface for the T1 processor, is not the first attempt at
defining a coberent communication architecture. Many earlier academic projects have
added support for multicomputing to 2 microprocessor.

The MDP processor in the J-Machine [DCC*87] was designed to provide hardware sup-
port for message-driven programming languages. However, it was not able to implement
the full message-driven architecture because the resulting complexity would have been
overwhelming. It was restricted to hardware support of one thread at each of three pri-
orities; a context switch between threads of the same priority involved moving register
contents back and forth to memory. In reality, the MDP would support Active Mes-
sages very well if it weren’t for the fact that the register sets for the different threads
are disjoint, preventing a close coupling between the primary computation and Active
Message handlers. Another disadvantage of the disjoint register sets is that the number
of registers available to each thread is greatly reduced. This prevents the high computa-
tional efficiency witnessed in conventional RISC processors resulting from having a large
amount of state close to the functional units (see [SGS*93] for a detailed comparison
between the J-Machine and the CM-5).

A more recent project at MIT is the Alewife multiprocessor and its Sparcle chip
[AKK*93). The approach taken in the Sparcle chip is similar to the work described
in this report, in that incremental changes are made to a mainstream microprocessor,
Sparc in the case of Sparcle. The current implementation of Sparcle is not as ambitious
as the T1 as far as providing an intimate coupling between computation and messaging
(this was not a primary objective, as the Alewife’s main communication mechanism is
cache-coherent shared memory). Message send and receive is handled by the communi-
cations and memory management unit (CMMU) located on a separate chip. The CMMU
signals the reception of a message via a dedicated trap line into the Sparcle chip, causing
control to be vectored to a trap handler which then can load and interpret the message.
The Sparcle chip supports a limited number of threads by segmenting the Sparc register
file into four non-overlapping windows. While this may superficially appear similar to
the multiple physical copies of some of the registers in the T1 architecture, the difference
is that Sparcle supports three general computational threads plus one context for traps
and handlers, while T1 supports only one computational thread along with two priorities
of handlers; these handlers, while tightly coupled to the primary computation, do not
perform any computation themselves.

The *T project at MIT has incorporated a network interface with another commercial
processor, the Motorola M88110, to make the M88110MP [PBGB93]. The resulting
communication architecture is very similar to that presented here. There is a minor
difference in data placement; the M88110MP has added separate send registers and re-
ceive registers, which are accessed through new instructions (but cannot be used directly
in normal computation). Also, although it is straightforward to implement a polling

25

Active Message layer on top of the existing hardware, the current implementation has
no support for hardware dispatch to the Active Message handler. To its credit, the *T
has attacked the UNIX protection issues that were not addressed in this project. Also,
the *T added a network interface to a superscalar processor, which posed a somewhat

greater challenge.

A slightly different architecture for multicomputers results when there is a separate com-
munication processor, as in the Meiko CS-2 [BCM94]. This type of architecture can be
thought of in the Active Message framework as having a processor dedicated for Active
Message handlers (although the CS-2 does not currently support user Active Message
handlers on its communication processor). The advantage of having a separate commu-
nication processor is that when the handlers are independent of the computation on the
main processor, as in the case of a remote fetch, no cycles are stolen from the primary
computation. However, when the message does interact with the primary computa-
tion, there is typically extra latency and overhead for data transfer and synchronization.
When the CNS-1 is completed, quantitative comparison studies should provide useful
data about these tradeoffs.

5 Concurrent Work

There has been a substantial amount of work done towards the implementation of the
communication micro-architecture and communication hardware to go with the commu-
nication architecture presented here. This work falls under two main categories: the
creation and use of a simulator running on a Thinking Machines’ CM-5 to compare
different design options for the communication micro-architecture (e.g. buffering and
flow-control strategies), and the subsequent creation of an RTL model of the communi-
cation hardware.

6 Conclusion

This report contains a full specification of a communication architecture to be incor-
porated into the MIPS instruction set architecture. The communication architecture is
based on the Active Messages mechanism, which has been shown to possess the desirable
attributes of versatility, efficiency, and incrementality. The resulting architecture will be
able to provide high performance under any of a variety of programming models: send
& receive, shared memory, or dataflow.

Because the communication architecture is based on Active Messages, the CNS-1 will
be able to benefit from much of the work that has gone on here at Berkeley in the area
of parallel language development. Split-C will provide a global address space with the

26

familiar C interface. Dataflow-style languages such as 1d90 will be supported efficiently
by the TAM model. These languages have already been implemented on top of other
similar Active Message implementations, 8o that porting them to the CNS-1 should be
straightforward. However, in both compilers there will be many new opportunities for
optimization for the T1 architecture, e.g. allocating registers to pass data or synchro-
nigation information between handlers and the primary computation.

The fruits of this project will be used in a chip that will be fabricated and used in
a real multiprocessor computer. I hope that the success of this chip will demonstrate
the benefits of adding a tightly-coupled network interface to a RISC microprocessor.
Hopefully MIPS and other major chip makers will follow Motorola’s lead and devote
some real estate to a similar network interface to create a multiprocessing version of their
microprocessor. Perhaps eventually an integrated network interface will be a standard
part of every RISC microprocessor.

6.1 Acknowledgements

Most if not all of the ideas concerning communication architectures and Active Messages
presented here were developed by Thorsten von Eicken. Even many of the implementa-
tion details are similar to those in CMAM, the CM-5 Active Message implementation by
von Eicken. The rough sketch of the communication architecture desired for T1 was done
by Krste Asanovic, the head architect of T1, and John Wawrzynek, the project leader. I
have regularly consulted Krste Asanovic, John Wawrzynek, Brian Kingsbury, Bertrand
Irissou, Sven Meier, and Stelios Perissakis about the VLSI implications of my choices.
The development of the multicast extension described here was spurred by discussions
with Jerry Feldman. Useful feedback has been gathered from many of the people working
on the CNS-1 project, including David Johnson, Silvia Meuller, James Beck, Phil Kohn,
and others at ICSI, including Stephan Murer and Steve Omonohundro. Thanks go to
Katherine Yelick, John Wawrzynek, and Andrea Dusseau for reading and commenting
on earlier drafts of this report; their feedback resulted in many significant improvements.

This research is supported in part by a National Science Foundation Graduate Fellowship,
Grant URI-N00014-92-J-1672 from the Office of Naval Research, and National Science
Foundation Infrastructure Grant number CDA-8722788. Additional support comes from
the International Computer Science Institute, whose funds are provided by the ministries
of research of Germany, Italy, and Switzerland, and cooperating companies.

References

[AKK+93] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald
Yeung, Godfrey D’Souza, and Mike Parkin. Sparcle: An Evolutionary Pro-
cessor Design for Multiprocessors. IEEE Micro, 13(3):48-61, June 1993.

27

[BCM94)

[CDG*93)

Eric Barton, James Cownie, and Moray McLaren. Message passing on the
Meiko CS-2. Parallel Computing, (20):497-507, 1994.

David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishna-
murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Paral-
lel programming in Split-C. In Proc. Supercomputing ’93, Portland, Oregon,
November 1993.

[CGSvE93] David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser, and Thorsten

[DCC*87]

[GWC93)

[HI92]

[Kan88)

[KIA+93)

[L+93)

[Lun94]

[PBGB93)

von Eicken. TAM — A Compiler Controlled Threaded Abstract Machine. In
Journal of Parallel and Distributed Computing, Special Issue on Dataflow,
June 1993.

William J. Dally, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar
Horwat, Jon Kaplan, Paul Song, Brian Totty, and Scott Wills. Architecture
of a Message-Driven Processor. In Proc. of the 14th Int’l Symposium on
Computer Architecture, June 1987.

Seth Copen Goldstein, Su-Lin Wu, and Timothy John Callahan. Hardware
Support for Packet Reordering and Flow Control in Multicomputer Net-
works. C5252 and CS250 class projects, University of California at Berkeley,
November 1993.

Dana S. Henry and Christopher F. Joerg. A Tightly-Coupled Processor-
Network Interface. In Proc. of 5th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems. ACM, October 1992.

Gerry Kane. MIPS RISC Architecture. Prentice-Hall, 1988.

David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-
Hong Lim. Integrating Message-Passing and Shared-Memory: Early Expe-
rience. In Practice and Principles of Parallel Programming (PPoPP) 1993,
pages 54-63, San Diego, CA, May 1993. ACM. Also as MIT/LCS TM-478,
January 1993.

Charles E. Leiserson et al. The Network Architecture of the Connection Ma-
chine CM-5. In Proceedings of the 5th Annual Symp. on Parallel Algorithms
and Architectures, 1993.

Stephan S. Luna. Implementing an Efficient Portable Global Memory Layer
on Distributed Memory Multiprocessors. Technical Report UCB//CSD-94-
810, University of California at Berkeley, May 1994.

G.M. Papadopoulos, G.A. Boughton, R. Greiner, and M.J. Beckerle. *T:
Integrated Building Blocks for Parallel Computing. In Proc. Supercomputing
'93, Portland, Oregon, November 1993.

28

[SGS*93] Ellen Spertus, Seth Copen Goldstein, Klaus Erik Schauser, Thorsten von
Eicken, David E. Culler, and William J. Dally. Evaluation of Mechanisms
for Fine-Grained Parallel Programs in the J-Machine and the CM-5. In
Proc. of the 20th Int’l Symp. on Computer Architecture, San Diego, CA,
May 1993.

[vE93] Thorsten von Eicken. Active Messages: an Efficient Communication Archi-
tecture for Multiprocessors. PhD thesis, University of California at Berkeley,
December 1993.

[VECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: a Mechanism for Integrated Communication and
Computation. In Proc. of the 19th Int’l Symposium on Computer Architec-
ture, Gold Coast, Australia, May 1992. (Also available as Technical Report
UCB//CSD-92-675, University of California at Berkeley).

29

Appendix A
Network Interface Specification

30

A.l Overview

The Torrent network interface is implemented as
part of coprocessor two (COP2), which is shared
with the Torrent vector unit.

The network interface has been designed to sup-
port the Active Message communication mecha-
nism (Thorsten von Eicken et.al.). This mecha-
nism minimizes communication overhead, allows
communication to overlap computation, and co-
ordinates the two without sacrificing processor

performance.

Network Interface Registers

There are a number of network interface registers
located in COP?2 register space; they are accessed
via the ctc2 and cfc2 instructions. These regis-
ters are used to configure the network interface,
report interface status, set the address of certain
event handler routines, and report auxiliary in-
formation about incoming messages.

Message Data Transfer

Message transmission and reception are modeled
as a remote procedure invocation that causes an
asynchronous subroutine call. Scalar headers are
built up in the CPU registers, using registers
$4-$7 and $29. These correspond to the argu-
ment and frame pointer registers in the MIPS
procedure call convention. A message send in-
struction (implemented as a COP2 instruction)
specifies the destination processor in a register,
the scalar message length in words, and a han-
dler address. The contents of the scalar registers
at the point of the send instruction are used for
the data component of the message.

On message arrival, an event causes CPU control
to be transferred to the handler address speci-
fied in the message. As control is transferred

31

to the handler, part of the CPU register set is
swapped to an event set that includes the newl,
arrived message data in the same registers used
for sends. Specifically, the argument passing reg-
isters ($4-87) and the stack pointer register ($29)
are swapped to an event set containing the newly
arrived data, and two of the temporary registers
($8 and $9) are swapped to an event set which
can be used as scratch space or to maintain state
between handler invocations. See Figure 1.

Roghas et o
diwaye sassmibis

Ragisnss somesitie
auly while CPU je
emscuting nesmnl cods

Ragiswes sosessibis saly
whea CPU is eascuting s
Jow priesizy svest handior

Ragisess scomeible
wly vha QUL
» onsouting s high priesiy

ovent bendier
pryy 28
-

Figure 1: CPU register file

Optionally, a data vector is included in the mes-
sage from a vector register in the vector unit. The
data vector is always received into an event copy
of $vr1 which is swapped in during the message
handler (analogous to the CPU register swap-
ping). This allows large data blocks to be sent
and received with low CPU overhead.

Network Interface Instructions

The instruction set has been extended in the
COP2 opcode space to deal with the network in-
terface. The standard ctc2/cfc2 instructions are
used accessing network interface control registers.

The standard MIPS branch-on-coprocessor in-
structions are used to branch conditionally upon

the coadition flag in the network interface. This
flag is set or reset by the send instruction depend-
ing upon whether it was successful.

There exist four different versions of the send in-
struction. A message can be sent at either high
priority or at low priority, and a message may or
may not include the contents of a vector register
in addition to its scalar data.

The HRET instruction is used to return the CPU
to its previous processing state and resume pro-
gram execution at the point it was preempted.

Message Delivery

While the exact performance of the network will
depend upon the network implementation and
network load, some general characteristics of the
network can be described.

The network will not “drop” any messages — if
the network accepts a message, it is guaranteed
to eventually get through to its destination. If
messages are sent to a processor faster than it pro-
cesses them, the messages will back up through
the network, and eventually the sending proces-
sor(s) will be inhibited from sending any more
messages.

There are two priority levels for messages — low
and high. These can be thought of as two logically
separate networks. Even if low priority messages
are backed up so that a processor cannot send any
more, it can still send high priority messages that
can get to the destination regardless of the low
priority traffic. High priority messages can only
be blocked by other high priority messages.

It is guaranteed that the delivery of messages is
in-order between any pair of processors. . That is,
the messages sent from processor A directly to
processor B at the same priority level are guaran-
teed to arrive at processor B in exactly the same
order as they were sent from processor A.

For further discussion of properties of the network

32

and its usage, see Subsection A.10.

Network Interface Events

There are three different events associated with
the network interface which can interrupt the nor-
mal operation of the CPU. The first type of event
is the arrival of a message. In this case CPU con-
trol is transferred to the handler specified in the
message. The second type of event is an outlet,
which can cause CPU control to be transferred
to an outlet handler (specified in a coprocessor
register) whenever the network interface can ac-
cept another outgoing message from the CPU.
The third type of event is a timelet, which causes
CPU control to be transferred to a timelet han-
dler (also specified in a coprocessor register) after
a certain amount of time has elapsed.

Events are divided into two priority levels - high
and low. The arrival of a high priority message
is the only high priority eveat. Outlets, timelets,
and arrivals of low priority messages are all low
priority events.

Low priority events can preempt normal compu-
tation but not other event handlers. High pri-
ority events can preempt normal computation or
low priority event handlers but not high priority
event handlers. This allows at most two levels
of event handling. See Subsections A.9 (Events)
and A.7 (The HRET Instruction).

Events are enabled or disabled depending on the
setting of two bits in the network interface status
register: EE (event enable) and LPEE (low priority
event enable). If EE is clear, then all events are
disabled. If LPEE is clear, then low priority events
are disabled. Stated another way, high priority
events are enabled only if EE is set; low priority
events are enabled only if both EE and LPEE are
set. In addition, there are event mask bits which
can be used to individually disable the different
types of events.

A.3 Network Interface Registers

The network interface registers are listed in Ta-
ble 1.

[Register | Description
E; timeh elet handler.
7| timec Timelet compare register.
9 | Count | Count register.
18 | enable | Network interface enable register.
19 | nistat | Network interface status register.
20 | LPEPC Low priority eveat PC.
21 | BPEPC | High priority event PC.
22 | niid Network interface ID.
23 | dmh Default message handler.
24 | outh Outlet handler.
25 | inh Incoming handler.

Table 1: Network interface registers in COP2.

33

A.2.1 Timelet Handler (NIRS)

0
addr)
32

3
L

Figure 2: Timelet Handler Rogister Format

The timelet handler (timeh) register is a 32b
read/write register that specifies the handler to
be invoked at the occurrence of a timelet event.
A timelet event occurs when the both the tp
(timelet pending) and tam (timelet mask) bits are
set, and low priority events are enabled. The tp
bit gets set when the value in the Count register is
equal to the value in the timelet compare (timec)

register.

Since instructions must be word aligned, this reg-
ister must contain an address whose two low or-
der bits are zero. Otherwise, an address exception
will occur when the CPU attempts to invoke the
timelet handler.

A.2.2 Timelet Compare Register (NIR7)

31 0
L Timelot 3?-& 1

Figure 3: Timelet Compare Register Format

The timelet compare (timec) register is a 32b
read/write register. When the value of the Count
register equals the value of the timelet compare
register, the tp (timelet pending) bit in the EP
field of the network interface status register gets
set. This causes a timelet event to occur on the
next cycle in which timelets are enabled. Timelets
are enabled if tm, LPEE, and EE are all set.

The timec register can be read or written at any
time using the ctc2/cfc2 instructions. Writing
to the timec register has the side effect of clearing
the tp bit.

34

A.2.3 Count Register (NIR9)

31 0
| Count |
32

Figure 4: Count Register Format

The Count register acts as a timer, incrementing
at a constant rate whether or not an instruction
is executed, retired, or any forward progress is
made. The rate at which the Count register is in-
cremented is dependent upon its implementation.
The Count registers of all nodes are reset and in-
cremented gimultaneously, providing a universal
time reference.

A.2.4 Network Interface Enable Register A.2.5 Network Interface Status Register

(NTR18) (NIR19) - High 16 Bits
31 1 0 31 0 29 28

C 0 [%] [pend [micond | onicead | 0]
3 1 1 1 1 1

2724 2320 19 18 17 16
[(EP | EM] LPEE | hpa | ipa [ane]
Figure 5: enable Register Format 4 4 1 I 1 1

The enable register contains only one active bit:

(event enable). Figure 6: Network Interface Status Register For-

mat - High 16 Bits
The EE (event enable) bit is read/write; it disables . . .
all types of events when it is clear. This bit is au- The network mterfat.:e status register, nistat, is
tomatically ¢l 1 when an high priority event formatted as shown in Figures 6, 7, and 8.

occu.rs-to P revent. further events from ocf:nrring, Accesses to nistate are fully interlocked; reads
and it is antomatically set by the HRET instruc- from it will reflect the results of all previous in-

tion of the high priority event handler. Events . . oo
should not be enabled within an event handler by :;’;‘cpf::f,‘fo;“ﬂl::::‘:;‘:;t will not be affected by
manually setting the EE bit.)

" .)] . The pend (event pending) bit is read-only. It in-
Writing a 0 to this ,’e?‘“" atomlca%ly d’”'bl‘j' all dicates whether one of the events that is individ-
types of events. This is useful for critical sections. ually enabled by the Event Mask field is pending.

When the EE bit is clear (i.e. events are disabled),
this bit can be checked for a quick poll.

The nicond (network interface condition flag) bit
is read/write. It is set or cleared by SEND in-
structions to indicate whether the attempted send
was successful or not. This bit can be tested using
the BC2F/BC2T instructions.

The onicond (old network interface condition
flag) bit is read/write. It is used to save the con-
tents of nicond when control is transferred to an
event handler.

The EP (Event Pending) field contains four read-
only bits indicating which of the four events are
pending. This is described in detail later.

The EM (Event Mask) field contains four
read/write bits which control the enabling of the
four events. This is described in detail later.

The LPEE (low priority event enable} bit is
read /write; it disables low priority events when
it is clear. It is automatically cleared when a low

35

priority event occurs, and it is automatically set
by the HRET instruction of the low priority event
handler. Events should not be enabled within a
handler by manually setting the LPEE bit.

The 1pa (low priority network available) bit is
read-only; when set, it indicates that the network
interface is currently willing to accept a low pri-
ority message from the CPU.

The hpa (high priority network available) bit is
read-only; when set, it indicates that the network
interface is currently willing to accept a high pri-
ority message from the CPU.

The ame bit is read/write; it specifies whether
Active Messages are enabled or not. With Active
Messages enabled (ame set), messages are handled
by the handler specified in the message. When
ame i8 clear, all messages are handled by a default
message handler, which is specified by the dmh
register.

36

A.2.6 Network Interface Status Regis-
ter (NIR19) ~ Event Pending and
Event Mask Fields

31 28 7 26 25

23 21 20

(bpom | lpan | om | tu |
1 1T 1 1

190

2

Figure 7: Network Interface Status Register For-
mat ~ EP and EM Fields

The Event Pending field is read-only and indi-
cates which of the four events are pending. The
Event Mask field is read/write and is used to in-
dividually enable/disable each event.

The hpmp (high priority message pending) bit,
when set, indicates that a high priority message
has arrived. When it is set, a high priority mes-
sage arrival event will occur on the next cycle in
which both the hpmm and EE bits are set. This
bit will automatically clear when there are no
more incoming high priority messages waiting to
be handled.

The 1pmp (low priority message pending) bit,
when set, indicates that a low priority message
has arrived. When it is set, a low priority mes-
sage arrival event will occur on the next cycle in
which all of the 1pmm, LPEE, and EE bits are set.
This bit will automatically clear when there are
no more incoming low priority messages waiting
to be handled.

The op (outlet pending) bit, when set, indicates
that the network interface can accept an outgo-
ing message (this occurs when both priority net-
works are available, i.e. both 1lpa and hpa are
set). When the op bit is set and also all of the
om, LPEE, and EE bits are set, an outlet event will
occur. This bit will automatically clear when the
low priority network can no longer accept an out-
going message.

The tp (timelet pending) bit is set when the

Count register contains the same value as the
timec register. When this bit is set, a timelet

event will occur on the next cycle in which all.

of the tm, LPEE, and EE bits are set. This bit is
cleared either by the occurrence of a timelet event
or by a write to the timec register.

The hpmm (high priority message mask), lpam
(low priority message mask), om (outlet mask),
and tm (timelet mask) bits are used to individu-
ally enable/disable each type of event (0 «» dis-
able, 1 «~ enable).

37

A.2.7 Network Interface Status Register
(NIR19) — Low 16 Bits

15 14183 1210 ¢ O
[pri] 0 | slen | vlen|
1 2 3 10

Figure 8: Network Interface Status Register For-
mat - Low 16 Bits

The network interface status register, nistat, is
formatted as shown in Figures 6, 7, and 8. Bits
15-0 are only valid within a message handler; they
contain auxiliary information about the incoming

message.

Accesses to nistate are fully interlocked; reads
from it will reflect the results of all previous in-
structions, and writes to it will not be affected by
any previous instructions.

The pri bit indicates the priority of the incoming
message (0 «~ low priority, 1 « high priority).

The slen field indicates how many scalar words
are in the message, while the vlen field indicates
how long the vector component of the message is.

A.28 Low Priority Event Program
Counter (NIR20) :
31 0
L addr]
32

Figure 9: LPEPC Register Format

The LPEPC is a 32-bit, read/write register used to
store the address where processing resumes after
the completion of a low priority event handler.

38

A.2)9 High Priority Event
Counter (NIR21)

Program

31 0
| addr 1
32

Figure 10: HPEPC Register Format

The HPEPC is a 32-bit, read/write register used to
store the address where processing resumes after
the completion of a high priority event handler.

A.2.10 Network Interface ID (NTR22)

N 1110 o
| 0 | ID |
21 11

Figure 11: Network Interface ID Register Format

The network interface ID (niid) register is a 32b
read only register that contains a value giving the
unique identity (i.e. network address) of the pro-

cessing node.

The niid register is formatted as shown in Fig-
ure 11. Bits 10-0 provide a unique identifier for
the processor; its interpretation is implementa-
tion dependent.

A.3.11 Defauit Message Handler Register
(NIR2S)

31 0
L addr |
32

Figure 12: Default Message Handler Register For-
mat

The default message handler (dmh) register is a
32b read/write register that specifies the address
of the handler which is to be invoked when any
message arrives while Active Messages are dis-
abled (i.e. while ame is clear).

Since instructions must be word aligned, this reg-

- ister must contain an address whose two low or-

39

der bits are zero. Otherwise, an address exception
will occur when the CPU attempts to invoke the
default message handler.

A.2.12 Outlet Handler Register (NIR24)

a 0
| addr |
32

Figure 13: Outlet Handler Register Format

The outlet handler (outh) register is a 32b
read/write register that specifies the address of
the handler which is to be invoked when an outlet
event occurs. An outlet event occurs when both
the op (outlet pending) and om (outlet mask) bits
are set, and low priority events are enabled. The
op bit is set if and only if the network interface
has room to accept another low priority message.
Typically an outlet handler will prepare and send

a message.

Since instructions must be word aligned, this reg-
ister must contain an address whose two low or-
der bits are zero. Otherwise, an address exception
will occur when the CPU attempts to invoke the
outlet handler.

40

A2.18 Incoming Handler Register
(NIR2S5)

31 0
ddr]
32

L

Figure 14: Incoming Handler Register Format

The incoming handler (inh) register is a 32b read-
only register that holds the address of the han-
dler specified in the incoming message. The con-
tents of this register are only valid inside of a
message handler. While this is redundant infor-
mation when Active Messages are enabled, it is
useful when Active Messages have been disabled
(possibly for debugging purposes). In this case, a
default message handler is always invoked when
a message arrives; it can then use inh to deduce
which type of message it actually was that ar-
rived. (Also, it is possible to implement a more
primitive type of message passing mechanism by
disabling Active Messages and using the handler
address field as a message type tag, which can be
read from inh.)

A.S Instruction Overview

Network Instruction Classes

There are a number of additional instructions for
dealing with the network interface, divided into
four classes:

¢ Network Interface Register instructions
that read and write network interface regis-
ters.

¢ Network Interface Branch instructions
which conditionally cause a CPU control
transfer based on the condition flag in the
network interface.

o Send instructions which cause the con-
struction and transmission of an interpro-
Cessor message.

¢ Handler Return instruction, HRET,
which causes the resumption of normal pro-
cessing after an event handler has com-
pleted its work.

41

Network Instruction Formats

Instructions for reading or writing to the net-
work interface registers use the standard MIPS

ctc2/ctc2 encodings.

Similarly, network interface branch instructions
use the standard MIPS bc2t/bc2t encodings.

Since HRET has no modifiers or arguments, its
encoding is straightforward.

The SEND instructions extend the MIPS ISA us-
ing COP2 opcode space. The general format of
SEND instructions is shown in Figure 15.

31 26 2524 2321 2016 1511 106 § 0

COP2 n t d vd | SENDxx
010010 10 1000xx
6 2 3 S 3 [3 6

Figure 15: SEND instruction general format.

The n field specifies how many scalar words to
include in the message.

The rt field specifies a register which contains the
address of the remote handler for this message.
The rd field specifies register which contains an
implementation-dependent identifier of the des-
tination node. The vd field specifies the vector
register to be optionally included in the message.
The length of the vector is obtained from the vlr
(vector length register) in the vector unit.

The low two bits (shown as xx) determine the pri-
ority of the message and whether a vector register
is included. Each different combination of these
two bits and the n field leads to a different ver-
sion of the SEND instruction. These are listed in
Subsection A.6.

A4 Network Interface Register Instruc-
tions

The network interface register instructions move
values between the CPU registers and the net-
work interface registers. These operations use the
standard MIPS coprocessor register operations.

The results of these operations are unpredictable
if the coprocessor register field is neither one of
the valid network interface register numbers as
listed in Table 1 nor one of the other registers de-
fined in COP2 for exception handling or memory
management.

42

CFC2 Move Control From COP2

31 26 2521 2016 1511 10 o

rt nirs
010010 | 00010 00000000000
[[[] 11

Format:
CFC2 rt, nirs
Description:

The contents of the network interface’s control
register nirs are loaded into CPU register rt.

This operation is only defined when nirsis a valid
coprocessor register.

Operation:
Tt := nirs;
Exceptions:

Coprocessor unusable exception.

orTes Move Coatrol To COP3

3 3 3531 2018 1511 10 °
O | v

€10010 | 00110 00000000000

I } X3 5 8 11
Format:
CTC2 rt, nirs
Description:
The contents of CPU register rt are loaded into
the network interface’s register nirs.

This operation is only defined when nirsis a valid
COprocessor register.

Operation:
nirs := rt;
Exceptions:

Coprocessor unusable exception.

43

A.5 Network Interface Branch Instruc-

tions

The network interface status register contains a
single condition flag, nicond, which is set and
reset by the SEND instruction depending upon its
success. A conditional branch may be performed
on the contents of this flag using the standard
MIPS branch-on-coprocessor instructions.

There must at least one instruction between the
SEND instruction and a following network inter-
face branch instruction which uses the nicond bit.

44

BC3T Branch on Network Interface True

31 26 25 31 30 16 15 0
BCT [ofteet |
010010 | 01000 | 00001
¢ [[16
Format:
BC2T offset
Description:

A branch address is computed from the sum of
the address of the instruction in the delay slot
and the 16b offset, shifted left two bits and sign-
extended to 32 bits.

If the network interface condition flag is set, the
program branches to the target address, with a
delay of one instruction.

Operation:

// do next instruction;
it (nicond) goto label;

Exceptions:

Coprocessor unusable exception.

X B] 10

BC2F offset

Deecription:

A branch address is computed from the sum of
the address of the instruction in the delay slot
and the 16b offset, shifted left two bits and sign-
extended to 32 bits.

If the network interface condition flag is clear,
the program branches to the target addrees, with
a delay of one instruction.

Operation:

// do next instruction;
i (inicond) goto label;

Exceptions:
Coprocessor unusable exception.

45

A.6 Send Instructions

SEND instructions specify the destination proces-
sor in a register, the message leagth in words (as
part of the opcode), and a handler address in a
register. If the low two bits of the handler address
are not both sero, then the coprocessor exception
“Handler Address Error” is raised. The data for
the message is gathered from CPU scalar registers
and/or a vector unit register.

The message which is formed includes a copy of
the KU, (current kernel/user) bit; this is used so
that the handler on the receiving node executes in
the same mode, kernel or user, in which the send-
ing node was operating when the message was
sent.

46

SENDn Send Message
31 26 32534 2321 2016 1511 106 5 0O
™ rt d vd
010010 10 XXX 100000
[2 3 S [S 6]
Format:
SENDn vd, rd, rt
Description:

If the network cannot accept the outgoing mes-
sage, nicond (the network interface condition
flag) is cleared and the instruction is aborted.

If the network can accept the outgoing message,
nicond is set, and the message is constructed and
sent. The contents of rt are used as the address
of the handler for the message. The contents of
rd specify the destination processor for the mes-
sage in an implementation-dependent way. The
contents of the first n of $4, $5, $6, $7, $29
are used as the data component of the message.
Encodings with n greater than 5§ are not valid in-
structions.

The message will have low priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:
Coprocessor unusable exception.
Coprocessor Exceptions:

Handler address exception.

SENDa.V Send Message w/ Vector SENDnH Send High Priority Message

31 26 32534 233t 2016 1511 106 § 0 31 26 2834 3331 2016 1511 106 &

» " d vd Al Y Tt rd vd

010010 10 XXX 100010 010010 10 XXX 100001
' [] 2 3 S [] [[] [2 3 [[5 [
Format: Format:
SENDn.V vd, rd, rt SENDnH vd, rd, rt
Description: Description:

If the network cannot accept the outgoing mes-
sage, nicond (the network interface condition
flag) is cleared and the instruction is aborted.

~ If the network can accept the outgoing message,
nicond is set, and the message is constructed and
sent. The contents of rt are used as the address
of the handler for the message. The contents of
rd specify the destination processor for the mes-
sage in an implementation-dependent way. The
contents of the first n of $4, $5, $6, $7, $29
are used as the scalar component of the message,
appended by the vector data contained in vd (vec-
tor control register vlr is read to get the vector

length). Encodings with n greater than 5 are not-

valid instructions.
The message will have low priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:
Coprocessor unusable exception.
Coprocessor Exceptions:

Handler address exception.

47

If the network cannot accept the outgoing mes-
sage, nicond (the network interface condition
flag) is cleared and the instruction is aborted.

If the network can accept the outgoing message,
nicond is set, and the message is constructed and
sent. The contents of rt are used as the address
of the handler for the message. The contents of
rd specify the destination processor for the mes-
sage in an implementation-dependent way. The
contents of the first n of $4, $5, $6, $7, $29
are used as the data component of the message.
Encodings with n greater than 5 are not valid in-
structions.

The message will have high priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:
Coprocessor unusable exception.
Coprocessor Exceptions:

Handler address exception.

SENDnH.V Send High Priority Msg. w/
Vector

31 26 2024 2371 2016 1511 106 &
» t d w

010010 | 10 | xxx 100011
] 2 3 5 3 5]
Format:
SENDnH.V vd, rd, rt
Description:

If the network cannot accept the outgoing mes-
sage, nicond (the network interface condition
flag) is cleared and the instruction is aborted.

If the network can accept the outgoing message,
nicond is set, and the message is constructed and
sent. The contents of rt are used as the address
of the handler for the message. The contents of
rd specify the destination processor for the mes-
sage in an implementation-dependent way. The
contents of the first n of $4, $5, $6, $7, $29
are used as the scalar component of the message,
appended by the vector data contained in vd (vec-
tor control register vlr is read to get the vector

length). Encodings with n greater than 5 are not
valid instructions.

The message will have high priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:
Coprocessor unusable exception.
Coprocessor Exceptions:

Handler address exception.

48

A.7T HRET Instruction

The HRET instruction is used to return from an
event handler and resume processing where it was
interrupted.

Assuming the LPEE and EE bits are correctly set
(that is, they contain the same values as they
did when the event handler began execution),
the HRET instruction will correctly return to ei-
ther normal code or to a low priority handler,
whichever was interrupted by the event which was
just handled.

Figure 16: Event State Transition Diagram

49

HRET Return from Event Handler
31 28 25 M 6 5 o
[e74) 0 Eﬁl’rl
010010 | 1 | 000 0000 0000 0000 0000 | 011100
€ 1 19 ¢
Format:
HRET
Description:

An HRET instruction is executed at the end of an
event handler to restore the state of the CPU and
network interface and resume processing where it
was interrupted by the event.

The following actions are performed:

¢ The EE and LPEE bits are updated to reflect
that one level of event handling is being ex-
ited; see Figure 16.

¢ If a low priority handler is being exited, the
onicond (old network interface condition)
bit is copied back into the nicond (network
interface condition) bit.

o The previous registers (both the scalar set
and $vri) are swapped back into the CPU
register address space.

e The contents of the LPEPC (low prior-
ity event program counter) or the HPEPC
(high priority event program counter), de-
pending on the priority of the event which
has just been handled, are copied back into
PC.

e If a message arrival handler is being ex-
ited, the KU, (current kernel/user) bit is
restored to the value it had before the han-
dler was entered.

A.8 Extensions for Multicast

A.8.1 Overview

In some applications the operation of distributing
identical data from one node to many other nodes
is common. In these cases some hardware support
for multicasting not only allows simpler software,
but also allows for more efficient utilization of the
network resources, leading to better performance.

In this subsection a simple extension to the net-
work interface specification is described; it adds a
mechanism for efficient multicasting. This mech-
anism does not provide fully general multicast ca-
pability; rather, it exposes enough of the underly-
ing hardware’s flexibility and performance so that
software libraries may use it in whichever way is
best suited for different communication patterns.

The multicast mechanism simply adds the op-
tion for a send to not only deliver the message
to the destination, but to also deliver a copy of
the message to every node along the path from
the source to the destination. Thus no more net-
work resources are consumed than for the simple
one-to-one send.

A.8.2 Additional State for Multicast

Only one addition is made to the network inter-
face registers. This is the addition of a bit in
the network interface status register indicating
whether or not an incoming message originated
from a multicast send or from a normal (one-to-
one) send. See Figure 17.

15 14 13 1210 9 O
| pri | mcst | 0 | slen | vlen |
1 1 1 3 10

Figure 17: Network Interface Status Register For-
mat (with Multicast Extension) — Low 16 Bits

All fields in the low 16 bits of the network status

50

register (nistat) are read only. They are only
valid within a message handler; they contain aux-
iliary information about the incoming message.

The mcst bit indicates whether the incoming mes-
sage was multicast (0 « unicast, 1 « multicast).

A.8.83 Additional Instructions for Multi-
cast

The network interface register access instructions
described earlier are sufficient for dealing with
the multicast extensions. Likewise, no additional
network interface branch instructions are needed.
The only area where the instruction set has been
extended is for the SEND instructions.

For each of the SEND instructions listed in Sub-
section A.6, a MCST version has been added
which is identical except that it forks a copy of the
message to each intermediate node on the path
from the sender to the receiver. This path should
be well defined for each implementation.

On the following pages, the MCST versions of the
SEND instructions are described in detail.

51

MCSTn Send Multicast
31 26 2524 3321 2016 1511 106 § 0
‘ » rt d | vd [MCSTw
010000 | 10 | xxx | 100100
[] 2 3 5 .3 3 6

Format:
MCSTn vd, rd, rt
Description:

If the network cannot accept the outgoing mes-
sage, the nicond (network interface condition) bit
is cleared and the instruction is aborted.

If the network can accept the outgoing message,
the nicond bit is set, and the message is con-
structed and sent. The contents of rt are used as
the address of the handler for the message. The
contents of rd specify the destination processor
for the message in an implementation-dependent
way. The contents of the first n of $4, $5, $6,
$7, $29 are used as the data component of the
message. Encodings with n greater than 5 are not
valid instructions.

The message will be received at the destination
node and algo by every intermediate node on the
path from the source to the destination. The path
is determined by the implementation.

The message will have low priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:
Coprocessor unusable exception.
Coprocessor Exceptions:

Handler address exception.

MCSTa.V Send Multicast w/ Vector MCSTnH Send High Priority Multicast

31 26 2524 3321 32016 1511 106 & 0O 31 26 2524 3321 2016 1511 106 § 0
» t | rd | vd | MCSTa.V | [COP2 ®w | .t | rd | vd | MCST»H |

010010 10 XXX 100110 010010 10 XXX 100101

' 6 2 3 [1] - 6 6 2 3 5 $ 5 6

Format: Format:

MCSTn.V vd, rd, rt MCSTnH vd, rd, rt

Description: Description:

If the network cannot accept the outgoing mes-
sage, the nicond (network interface condition) bit
is cleared and the instruction is aborted.

If the network can accept the outgoing message,
the nicond bit is set, and the message is con-
structed and sent. The contents of rt are used as
the address of the handler for the message. The
contents of rd specify the destination processor
for the message in an implementation-dependent
way. The contents of the first n of $4, $5, $6,
$7, $29 are used as the data component of the
message. Encodings with n greater than 5 are not
valid instructions.

The message will be received at the destination
node and also by every intermediate node on the
path from the source to the destination. The path
is determined by the implementation.

The message will have low priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:
Coprocessor unusable exception.
Coprocessor Exceptions:

Handler address exception.

If the network cannot accept the outgoing mes-
sage, the nicond (network interface condition) bit
is cleared and the instruction is aborted.

- Hf the network can accept the outgoing message,

52

the nicond bit is set, and the message is con-
structed and sent. The contents of rt are used as
the address of the handler for the message. The
contents of rd specify the destination processor
for the message in an implementation-dependent
way. The contents of the first n of $4, $5, $6,
$7, $29 are used as the data component of the
message. Encodings with n greater than 5 are not
valid instructions.

The message will be received at the destination
node and also by every intermediate node on the
path from the source to the destination. The path
is determined by the implementation.

The message will have high priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:
Coprocessor unusable exception.
Coprocessor Exceptions:

Handler address exception.

MCSTuH.V Send High Priority Multicast
w/ Vector

31 2 2824 12321 2016 1511 106 &

s rt rd vd nH.
010010 10 XXX 100111
[2 3 5 [[[])
Format:
MCSTnH.V vd, rd, rt
Description:

I the network cannot accept the outgoing mes-
sage, the nicond (network interface condition) bit
is cleared and the instruction is aborted.

If the network can accept the outgoing message,
the nicond bit is set, and the message is con-
structed and sent. The contents of rt are used as
the address of the handler for the message. The
contents of rd specify the destination processor
for the message in an implementation-dependent
way. The contents of the first n of $4, $5, $6,
$7, $29 are used as the data component of the
message. Encodings with n greater than 5 are not
valid instructions.

The message will be received at the destination
node and also by every intermediate node on the
path from the source to the destination. The path
is determined by the implementation.

The message will have high priority.

Although this instruction may take multiple cy-
cles, it is atomic in that interrupts or events can-
not occur in the middle of its execution.

Exceptions:
Coprocessor unusable exception.
Coprocessor Exceptions:

Handler address exception.

53

A9 Events

Events asynchronously interrupt the ongoing
computation and cause the invocation of a han-
dler. In this way they are similar to standard
interrupts, but the event mechanism is different
from the interrupt mechanism in many ways.

There are currently three types of events defined:
message arrival events, outlet events, and timelet
events. Events are also classified as either high
priority or low priority. The arrival of a high
priority message is the only high priority event.
Outlets, timelets, and arrivals of low priority mes-
sages are all low priority events.

In general, only one level of event handling is al-
lowed. If while one event is being serviced another
event occurs, the latter event will wait until the
earlier event has completed its handling. This en-
forced using the LPEE (low priority event enable)
bit in the network interface status word.

The exception to this is that a high priority event
will preempt the handling of a low priority event.
In this case two levels of event handling are al-
lowed. To support these two levels of events,
there are two different register event sets in addi-
tion to the normal register set (see Figure 1). A

high priority event cannot preempt the handling .

of another high priority event. This is enforced
using the EE (event enable) bit in the network
interface status word.

In the case where two low priority events oc-
cur simultaneously, or when multiple low priority
events are waiting at the completion of the han-
dling of another event, a fixed ordering decides
which event gets handled. Message arrival events
get handled first, then timelet events, and finally
outlet events get handled only when no other un-
masked events are pending.

For all events, after handling has been completed,
the previously ongoing execution is resumed by
the execution of the HRET instruction (see Sub-
section A.7).

54

A.9.1 Message Arrival Events

A message arrival event is caused when a mes-
sage has been completely received into the net-
work interface. At this point several things occur
as control is transferred to the handler:

¢ The address of the next instruction to be
executed when normal processing resumes
after the event has been serviced is stored
in the LPEPC register if it is a low priority
message or is stored in the HPEPC register
if it is a high priority message. In the case
that this instruction would be a branch de-
lay slot, the address of the previous branch
instruction is instead stored.

o If the message has low priority, the LPEE
bit in the network interface status word
is cleared, preventing further low priority
events from occurring.

o If the message has high priority, the EE
bit in the network interface status word is
cleared, preventing any further events from
occurring,.

o The vector data component of the incom-
ing message, if present, is transferred into
the appropriate copy of vector unit register
$vri. This register is then swapped into the
vector unit address space so that it is acces-
sible (in agreement with the new setting of
EE and LPEE).

o The scalar data component of the incom-
ing message is transferred into the appropri-
ate event set registers (either low priority or
high priority) in the CPU, and these event
set registers are swapped into the CPU reg-
ister address space, specifically at addresses
$4-$7 and $29 (see Figure 1). The normal
copy of these registers cannot be accessed
within the handler.

o Two event set temporary registers are also
swapped into the CPU register space at ad-

dresses $8 and $9. The contents of the nor-
mal registers $8 and $9 cannot be accessed.
See Figure 1. The contents of the event
set temporary registers are preserved across
handler invocations.

If the message has low priority, the nicond
(network interface condition) bit in the net-
work interface status word is saved into the
onicond (old network interface condition)
bit. (It is not necessary to preserve the
nicond bit for a high priority message since
a high priority event handler should not
attempt to send any messages; if it does,
it is responsible for saving and restoring
nicond.)

The KU, (current kernel/user) bit is saved,
then set or cleared according to whether the
sending node was in kernel or user mode
when the message was composed.

If Active Messages are enabled, the address
of the handler specified in the message is
loaded into the PC so that control is trans-
ferred to the handler. If Active Messages
are disabled, the contents of the dmh (de-
fault message handler) register are loaded
into the PC.

55

A.9.2

Outlet Events

An outlet event is triggered when the op (outlet
pending) and the om (outlet mask) bits in the net-
work interface status word are both set, and low
priority events are enabled. The op bit is set if
and only if the network interface can accept a low
priority message from the CPU.

The outlet mechanism facilitates background
data transfers and eliminates the need to poll
the op bit in the network interface status word.
An outlet handler must send a message or disable
outlet events; otherwise outlet events will occur
endlessly.

When an outlet event occurs, several things hap-
pen:

e The address of the next instruction to be
executed when processing resumes after the
outlet event has been serviced is stored in
the LPEPC register. In the case that this
instruction would be a branch delay slot,
the address of the previous branch instruc-
tion is instead stored.

¢ The LPEE (low priority event enable) bit in
the network interface status word is cleared,
preventing further low priority events from
occurring.

e The low priority event set registers are
swapped into CPU register address space at
$4-$9, $29 (the normal contents of these
registers cannot be accessed within the han-
dler). The contents of $4-$7 and $29 are
unpredictable, while the contents of $8 and
$9 are preserved across handler invocations.
None of these registers have to be preserved
by the handler, speeding the process of mes-
sage composition. See Figure 1.

o The low priority event copy of $vri is
swapped into the vector unit address space,
with unpredictable initial contents. Its con-
tents do not have to be preserved, making
it useful for composing vector messages.

¢ The address of the outlet handler, speci-
fied in the outh network interface register,
is jammed into the PC so that control is
transferred to the handler.

¢ The nicond (network interface condition)

bit in the network interface status word is
saved into the onicond (old network inter-
face condition) bit.

56

A.9.83 Timelet Events

A timelet event occurs when both the tp (timelet
pending) and the tm (timelet mask) bits are set,
and low priority events are enabled. The tp bit
gets set when the value in the Count register is
the same as the value in the Timelet Compare
(timec) register. The tp bit gets cleared either
when a timelet event occurs or when the timec
register is written.

When a timelet event occurs, the following things
happen as control is transferred to the handler:

¢ The address of the next instruction to be
executed when processing resumes after the
outlet event has been serviced is stored in
the LPEPC register. In the case that this
instruction would be a branch delay slot,
the address of the previous branch instruc-
tion is instead stored.

e The LPEE (low priority event enable) bit in
the network interface status word is cleared,
preventing further low priority events from
occurring,.

e The tp (timelet pending) bit is cleared.

e The low priority event set registers are
swapped into CPU register address space at
$4-$9, $29 (the normal contents of these
registers cannot be accessed within the han-
dler). The contents of $4-$7 and $29 are
unpredictable, while the contents of $8 and
$9 are preserved across handler invocations.
None of these registers have to be preserved
by the handler, speeding the process of mes-
sage composition. See Figure 1.

o The low priority event copy of $vri is
swapped into the vector unit address space,
with unpredictable initial contents. Its con-
tents do not have to be preserved, making
it useful for composing vector messages.

o The address of the outlet handler, specified
in the timeh network interface register, is

jammed into the PC 00 that coatrol is trans-
farred to the handler.

o The nicond (metwork interface condition)
bit in the network interface status word is
saved into the onicond (old network inter-
face condition) bit.

57

A.10 Usage Notes

Network Behavior

Messages in the network are guaranteed to be de-
livered in order. If processor A sends a number
of messages to processor B, it is not possible that
processor B may receive those messages in a dif-
ferent order than they were sent from processor A.

The lowest level of flow control between two pro-
cessors operates as follows: if messages arrive at
a node faster than the node processes them, the
messages will start to back up in various buffers
along the paths) between the sending node(s) and
the receiving node. Once the messages back up
all the way to the network interface of a send-
ing node, the sending processor will be prevented
from sending any more messages: the 1pa/hpa bit
will be clear, and any SEND attempt will result
in the nicond (network interface condition) bit
being clear, indicating that the attempt failed.

This describes what occurs considering messages
of only one priority level. Even if the low priority
network is backed up with messages, high priority
messages can still get through (unless the high
priority network is also backed up).

Hazards

Because there might not be any bypassing be-
tween network interface control registers and the
CPU registers, there is an exposed hazard involv-
ing data transfers between them. The following is
a list of hazards which are due to transfer delays.

e For a CFC2 instruction, the data being
transferred to the CPU register is not avail-
able until the second instruction after the
CFC2 instruction.

e For a CTC2, any changes in the network
interface state will not take effect until the

58

third instruction after the CTC2 instruc-
tion.

o There must be one instruction between a
SEND instruction and a BC2F/BC2T in-
struction which tests its success.

¢ There must be two instructions between a
CTC?2 instruction and a network interface
branch instruction which tests a bit affected
by the CTC2.

An implementation may implement bypassing be-
tween network interface control registers and the
CPU registers, in which case the above hazards
to not exist.

Typical Send Sequence

The availability of the network may be polled
by looking at the appropriate bit in the network
interface status register. Once it is determined
that the network is available, a SEND can be at-
tempted. In general, the success of the SEND
must still be checked using the BC2T /BC2F in-
structions. This is because an asynchronous event
or interrupt may occur between the poll and the
SEND, and the invoked handler may execute a
SEND of its own, causing the network to become
unavailable.

If it is known that the SEND will likely succeed,
the SEND can be tried directly without polling
the network first. However, a failed SEND / check
for success sequence will likely consume more cy-
cles than the four required for a poll.

Between a SEND and the check of success, an
event or interrupt may occur. If this event or in-
terrupt performs a SEND, the nicond bit will be
overwritten. In the case of a low priority event,
the nicond bit is automatically saved to onicond
at the beginning of the event handler and restored
at the end of the handler, so the information is
not lost. However, an interrupt or high priority
event handler which performs a SEND will have

- to preserve the nicond bit by reading and sav-
ing the network interface status word before the

SEND and then restoring it after the SEND.

Figure 18 shows a simple sequence showing a poll
[/ send / check for success sequence.

CPC2 81, Smistat X get nistat

e
¥=~-shift lpa bit to sign bit-—
SLL $1, 81, 14

X-~--branch if sign bit is set----
BLTZ $1, Ssendit
X=~--othervise continue-——

$sendit: <prepare data in $4-87, $29>
<move address of handler into $8>
<move identifier of destination into $9>
<load vector data into $vrd>
SENDS.V $8, 89, $vr4
nop
BC2F $send_fail

Figure 18: Example showing some network interface
instructions

Initialization of Event Set Registers

In general, the event set registers are only acces-
sible from within event handlers. However, it is
often useful to initialize event set registers $8 and
$9 from within the main code segment prior to the
invocation of any handlers. To facilitate this, we
have made the visibility of the registers controlled
by the setting of the LPEE/EE bits. These bits are
normally set and reset as side effects of entering
and exiting event handlers, but they can also be
changed manually (by writing to the network in-
terface status register) from normal code.

LPEE and EE control the visibility of the event set
registers as follows:

59

Hegister Set Viaible

Ooo-'-tg]
[
i
<]

0
1
0

Normal set

Low priority event set
High priority event set
High priority event set

Note that when the low priority event set is visi-
ble from normal code, low priority events are dis-
abled. When the high priority event set is visible

from normal code, all events are disabled.

Active Messages

For the background, motivation, and advantage-
of Active Messages, refer to

Thorsten von Eicken, David E. Culler,
Seth Copen Goldstein, Klaus Erik
Schauser. “Active Messages: a Mech-
anism for Integrated Communication
and Computation”, in Proceedings of
the 19** International Symposium on
Computer Architecture, May 1992.

To quote from this paper,

Active Messages is an asynchronous
communication mechanism intended
to expose the full hardware flexibil-
ity and performance of modern inter-
connection networks. The underlying
idea is simple: each message contains
at its head the address of a user-level
handler which is executed on message
arrival with the message body as ar-
gument. The role of the handler is
to get the message out of the net-
work and into the computation ongo-
ing on the processing node. The han-
dler must execute quickly and to com-
pletion.

Some restrictions are placed on what handlers
are allowed to do, for performance and deadlock
avoidance reasons. Handlers should not perform
serious computation; they should perform oper-
ations on the order of placing data into buffers,
queuing up work for the primary computation, or
replying to a remote memory fetch.

For request-reply exchanges such as “get” mem-
ory operations, the request must be a low prior-
ity message and the reply must be a high priority
message in order to avoid deadlock. In general, a
low priority event handler is not allowed to loop

waiting to send a low priority message (although
it is allowed to loop waiting to send a high priority
message). A handler for a high priority message is
not allowed to wait to send any kind of message.

As an example, consider the typical usage of out-
let events: background data transfer. It is desir-
able to use low priority transfer for these large
data transfers, so that they do not interfere with
time-critical communications such as barrier syn-
chronizations. In fact, outlets are designed for
sending low priority messages, since they are trig-
gered by the low priority network being willing to
accept an outgoing message. But since an outlet
handler is a low priority handler, isn’t it a bad
idea to send a low priority message from within
it? No, not as long as the processor doesn’t busy
wait while trying to send the message. The typ-
ical outlet handler should look like this (notice
that there is ..o looping):

attempt low priority send of data block
was it successful?
yes: update pointer or queue
no: don’t update state
return from handler

Usually the send will succeed, since what set the
outlet pending bit in the first place was that the
network interface had room to accept another
message.

